Thermonatrit: Unterschied zwischen den Versionen

Aus Salzwiki
Zur Navigation springen Zur Suche springen
 
(53 dazwischenliegende Versionen von 7 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
Autoren: Hans-Jürgen [[Benutzer:Hschwarz|Schwarz ]], Nils Mainusch, NN....
Autoren: Hans-Jürgen [[Benutzer:Hschwarz|Schwarz ]], Nils Mainusch
<br>zurück zu [[SalzWiki:Carbonate |Carbonate]] 


{| align="right" style="border: 2px solid rgb(224, 224, 224); padding: 5px; width: 380px; background-color: rgb(249, 249, 249);"
{{Infobox_Salz
|-
|Footnote=<ref>
| bgcolor="#cccccc" align="center" colspan="2" | '''{{#if: {{{minsalzbez|}}}|{{{minsalzbez}}}|{{PAGENAME}}}}'''
http://webmineral.com/data/Thermonatrite.shtml</ref><ref>http://www.mindat.org/min-3938.html</ref><ref>http://www.mineralienatlas.de/lexikon/index.php/MineralData?mineral=Thermonatrit</ref>
|- bgcolor="#dddddd"
|bild =  <!--[[Image:"Name der Bilddatei"|300px]] -->
| align="center" colspan="2" | [[Image:{{{bild}}}|300px]]
|mineralogischerName=Thermonatrit
|- bgcolor="#dddddd"
|chemischerName =Natriumcarbonathydrat
| Mineralogische Salzbezeichnung
|Trivialname =Natriumcarbonat
| bgcolor="#99ffaa" | Thermonatrit
|chemFormel =Na<sub>2</sub>CO<sub>3</sub>•H<sub>2</sub>O<sub></sub>
|- bgcolor="#dddddd"
|Hydratformen =Natrit (Na<sub>2</sub>CO<sub>3</sub>)<br>Natriumcarbonatheptahydrat (Na<sub>2</sub>CO<sub>3</sub>•7H<sub>2</sub>O)<br>Natriumcarbonatdecahydrat - [[Natron]](Na<sub>2</sub>CO<sub>3</sub>•10H<sub>2</sub>O)
| Chemische Bezeichnung
|Kristallsystem =orthorhombisch
| bgcolor="#99ffaa" | Natriumcarbonathydrat, Natriummoonohydrat<br>
|Deliqueszenzfeuchte =71% (35°C)
|- bgcolor="#dddddd"
|Löslichkeit=330 g/l
| Trivialname  
|Dichte =2,250 g/cm<sup>3</sup>
| bgcolor="#99ffaa" | Natriumcarbonat<br>
|Molvolumen =55,11 cm<sup>3</sup>/mol
|- bgcolor="#dddddd"
|Molgewicht =124,00 g/mol
| Chemische Formel
|Transparenz =durchsichtig bis durchscheinend
| bgcolor="#99ffaa" | Na<sub>2</sub>CO<sub>3</sub> • H<sub>2</sub>O<sub></sub>
|Spaltbarkeit =undeutlich
|- bgcolor="#dddddd"
|Kristallhabitus =
| Hydratformen  
|Zwillingsbildung =
| bgcolor="#99ffaa" |
|Brechungsindices =n<sub>x</sub> = 1,420<br>n<sub>y</sub>= 1,509<br>n<sub>z</sub> = 1,525
Na<sub>2</sub>CO<sub>3</sub> • 10H<sub>2</sub>O Natrit; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Na<sub>2</sub>CO<sub>3</sub> • 7H<sub>2</sub>O Natriumcarbonatheptahydrat; Natriumcarbonat (wasserfrei)<br>  
|Doppelbrechung =Δ = 0,105
|optOrientierung=zweiachsig negativ
|Pleochroismus =
|Dispersion =
|Phasenübergang =
|chemVerhalten =
|Bemerkungen =in wässriger Lösung alkalisch,<br> pH ≈ 12
|Literatur=<bib id="Lide:1995"/>
}}
<!--
== Abstract  ==


|- bgcolor="#dddddd"
== Einleitung  == -->
| Kristallklasse
| bgcolor="#99ffaa" | orthorhombisch
|- bgcolor="#dddddd"
| Deliqueszenzfeuchte 20°C
| bgcolor="#99ffaa" | -
|- bgcolor="#dddddd"
| Dichte (g/cm³)
| bgcolor="#99ffaa" | 2,26g/cm<sup>3</sup>
|- bgcolor="#dddddd"
| Molvolumen
| bgcolor="#99ffaa" | 55,11cm<sup>3</sup>/mol
|- bgcolor="#dddddd"
| Molgewicht
| bgcolor="#99ffaa" | 124,0g/mol
|- bgcolor="#dddddd"
| Transparenz
| bgcolor="#99ffaa" | durchsichtig bis durchscheinend<br>
|- bgcolor="#dddddd"
| Spaltbarkeit
| bgcolor="#99ffaa" | undeutlich<br>
|- bgcolor="#dddddd"
| Kristallhabitus
| bgcolor="#99ffaa" | <br>
|- bgcolor="#dddddd"
| Zwillingsbildung
| bgcolor="#99ffaa" | <br>
|- bgcolor="#dddddd"
| Brechungsindices
| bgcolor="#99ffaa" | n<sub>x</sub> = 1,420; n<sub>Y </sub>= 1,509; n<sub>Z</sub> =&nbsp;1,525
|- bgcolor="#dddddd"
| Doppelbrechung
| bgcolor="#99ffaa" | Δ = 0,105
|- bgcolor="#dddddd"
| Optische Orientierung
| bgcolor="#99ffaa" | <br>
|- bgcolor="#dddddd"
| Pleochroismus
| bgcolor="#99ffaa" | -
|- bgcolor="#dddddd"
| Dispersion
| bgcolor="#99ffaa" | -
|- bgcolor="#dddddd"
| Phasenübergang
| bgcolor="#99ffaa" | -
|- bgcolor="#dddddd"
| Chemisches Verhalten
| bgcolor="#99ffaa" | in wässriger Lösung alkalisch,&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; pH ≈ 12
|- bgcolor="#dddddd"
| Bemerkungen
| bgcolor="#99ffaa" | -
|}


<br>


= Abstract =
== Allgemeines ==
 
<br>


= Einleitung  =
Die allgemeinen Angaben zu Umwandlungsreaktionen, Hyradtationsdrücken, Vorkommen sind bei [[Natrit|Natriumcarbonate - Natrit]] zu finden.


<br>


= Allgemeines =
=== Hygroskopizität ===


Die Abschätzung der Hygroskopizität von in situ vorliegenden Natriumcarbonaten ist schwierig, da die Lage des Sorptionspunktes und des Sättigungswertes unter dem Einfluss von lokalen Begebenheiten (Fremdionen, vorliegende Hydratstufen, Temperaturverhältnisse) sehr stark variiert. Nachstehend finden sich Angaben der Deliqueszenzfeuchte von Thermonatrit und Natrit in Abhängigkeit von der Umgebungstemperatur (vgl. Tabelle [[Gleichgewichtsfeuchte in Abhängigkeit von Temperatur]]):
<br>  
<br>  
 
{|border="2" cellspacing="0" cellpadding="4" width="30%" align="left" class="wikitable"
== Vorkommen von Thermonatrit<br>  ==
|+''Tabelle 1: Deliqueszenzfeuchte von Thermonatrit''                 
 
Natürliche Vorkommen von Natriumcarbonaten finden sich in festen Salzablagerungen, in Salzseen (sogenannten Natron-Seen wie dem Magadi-See in Ostafrika oder dem Owens Lake in Kalifornien. Weiterhin existieren alkalische Quellen mit variierendem Gehalt an natürlichem Natriumcarbonat. Zur Gewinnung sind unterschiedliche technische Verfahren entwickelt worden, in denen durch Lösungs-, Reinigungs- und Eindampfprozesse reines Natriumcarbonat erzeugt werden kann.
 
<br>
 
== <br> Angaben zu Herkunft und Bildung von Thermonatrit an Baudenkmalen<br>  ==
 
Durch den Eintrag von Materialien, die lösliche Natriumverbindungen enthalten, können im mineralischen System eines Baudenkmals Natriumcarbonate als Ausblühsalze entstehen. Einen hohen Gehalt an Natriumionen weisen Zemente auf, in denen nach DIN-Vorgaben bis zu 0,5% lösliche Alkalien enthalten sein dürfen. Rein rechnerisch kann 1 Gramm Na<sub>2</sub>O ca. 4,6 Gramm Natriumcarbonatdekahydrat bilden. Enthält beispielsweise ein Portlandzement lediglich 0,1% Na<sub>2</sub>O, so können etwa 0,45 kg Natriumcarbonate pro 100 kg Zement entstehen &lt;bibref&gt;Arnold.etal:1991&lt;/bibref&gt;. Eine Fülle von Reinigungsmaterialien und v.a. früher verwendete Restaurierungsprodukte (wie Wasserglas) können Natriumionen in Baudenkmäler eintragen. Als weitere Quellen sind Grundwasser und Oberflächen-wasser anzuführen, die Na<sup>+</sup>-Ionen enthalten können. Streusalz besteht zu großem Teil aus leicht löslichem Natriumchlorid. In Küstennähe ist NaCl-haltiges Meerwasser als Natriumquelle zu berücksichtigen.
 
= Angaben zum Schadenspotential und zur Verwitterungsaktivität von Thermonatrit  =
 
== Lösungsverhalten  ==
 
Die drei an Bauwerken nachgewiesenen Natriumcarbonate besitzen eine hohe Wasserlöslichkeit, wodurch prinzipiell eine große Mobilität der Salze verbunden ist. Herauszuheben ist die große Temperaturabhängigkeit der Lösungseigenschaften bei Thermonatrit und Natrit. Die starke Temperaturabhängigkeit der Löslichkeit der Natriumcarbonat kann zur Folge haben, daß in Wasser gelöstes Natrit bei Abfall der Umgebungstemperatur durch Übersättigung der Lösung ausfällt, auch wenn die Feuchteverhältnisse konstant bleiben.
 
''Diagramm 1 – Darstellung der temperaturabhängigen Veränderung der Löslichkeit von Thermonatrit und Natrit im Vergleich mit anderen Salzphasen (Löslichkeitsangaben nach Schwarz und Stark/Stürmer 1993).''
 
(vgl.Tabelle [[Hygroskopizität der Salze und Gleichgewichtsfeuchte]]) <br>
 
<br>
 
== Hygroskopizität  ==
 
Die Abschätzung der Hygroskopizität von in situ vorliegenden Natriumcarbonaten ist schwierig, da die Lage des Sorptionspunktes und des Sättigungswertes unter dem Einfluß von lokalen Begebenheiten (Fremdionen, vorliegende Hydratstufen, Temperaturverhältnisse) sehr stark variiert. Nachstehend finden sich Angaben der Deliqueszenzfeuchte von Thermonatrit und Natrit in Abhängigkeit von der Umgebungstemperatur: <br>
 
{| cellspacing="1" cellpadding="1" border="1" style="width: 109px; height: 45px;"
|-
|-
| &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 35°C
|bgcolor = "#F0F0F0" align=center| '''35°C'''
|-
|-
| &nbsp; &nbsp; 71,0% r.F.
|bgcolor = "#FFFFEO" align=center| 71,0% r.F.
|}
|}
<br><br><br><br><br>


''&nbsp;Tabelle 1 - Deliqueszenzfeuchte von Thermonatrit [nach H.J. Schwarz 1996] ''<br>
{|border="2" cellspacing="0" cellpadding="4" width="40%" align="left" class="wikitable"
 
|+''Tabelle 2: Deliqueszenzfeuchte von Natrit [nach Arnold/Zehnder, 1991]''
{| cellspacing="1" cellpadding="1" border="1" style="width: 309px; height: 59px;"
|-
|-
| &nbsp;&nbsp;&nbsp; 15°C
|bgcolor = "#F0F0F0" align=center| '''15°C'''
| &nbsp;&nbsp;&nbsp; 20°C
|bgcolor = "#F0F0F0" align=center| '''20°C'''
| &nbsp;&nbsp;&nbsp; 25°C
|bgcolor = "#F0F0F0" align=center| '''25°C'''
| &nbsp;&nbsp; 30°C
|bgcolor = "#F0F0F0" align=center| '''30°C'''
|-
|-
| &nbsp;96,5% r.F.
|bgcolor = "#FFFFEO" align=center| 96,5% r.F.  
| &nbsp; 97,9% r.F.
|bgcolor = "#FFFFEO" align=center| 97,9% r.F.  
| &nbsp; 88,2% r.F.  
|bgcolor = "#FFFFEO" align=center| 88,2% r.F.  
| &nbsp;83,2% r.F.
|bgcolor = "#FFFFEO" align=center| 83,2% r.F.
|}
|}
<br><br><br><br><br><br>


''&nbsp;Tabelle 2 – Deliqueszenzfeuchte von Natrit [nach Arnold/Zehnder, 1991]''
== Analytischer Nachweis  ==
 
== Kristallisationsdruck  ==
 
Bei der Kristallisation aus wäßriger Lösung läßt sich für Thermonatrit ein Kristallisationsdruck von 28,0-33,3 N/mm<sup>2</sup>, für Natrit 7,8-9,2 N/mm<sup>2</sup> angeben (zum Vergleich die berechneten Angaben der Werteskala anderer bauschädlichen Salze: 7,2-65,4 N/mm<sup>2</sup>) [nach Winkler 1975].
 
== Hydratationsverhalten  ==
 
Das System Na<sub>2</sub>CO<sub>3</sub> und H<sub>2</sub>O:
 
Bei der Betrachtung des Systems Na<sub>2</sub>CO<sub>3</sub> und H<sub>2</sub>O sind drei stabile Hydratwasserstufen zu unterscheiden, die an Bauwerken nachgewiesen wurden und zwar ein 10-Hydrat (Natriumcarbonatdekahydrat), ein 7-Hydrat (Natriumcarbonatheptahydrat) und das 1-Hydrat (Natriumcarbonatmonohydrat). Die unterschiedlichen Natriumcarbonat-Hydrate sind herstellbar, indem eine Ausscheidung des Produktes aus einer übersättigten, wäßrigen Lösung bei bestimmten Temperaturen initiiert wird. So entsteht das Natriumcarbonatdekahydrat, wenn der Kristallausfall bei einer Temperatur von unter 32°C stattfindet, der Ausfall bei einer Temperatur zwischen 32°C und 35,4°C führt zur Bildung von Natriumcarbonatheptahydrat, eine Lösungstemperatur von über 35,4°C führt zum Entstehen des Monohydrates, also Thermonatrit. Diese Temperaturwerte werden als Übergangstemperatur bezeichnet. Wasserfreies Natriumcarbonat kann durch Trocknung der bezeichneten Hydratstufen bei ca. 98°C erhalten werden, geht bei Raumtemperatur und normalen Luftfeuchteverhältnissen allerdings rasch in Thermonatrit und/oder andere Hydratstufen über. Das im engen Temperaturbereich zwischen 32°C und 35,4°C aus übersättigter Lösung herstellbare Heptahydrat ist, gleich der wasserfreien Form, in üblichen klimatischen Verhältnissen vergleichsweise instabil und in der Regel ein Übergangsprodukt beim Wechsel des stabileren Thermonatrit zu Natrit oder umgekehrt.
 
== Hydratationsdruck  ==
 
Zur Gruppe der verwitterungsaktiven Salze werden Natrit und Thermonatrit aufgrund der Eigenschaft gezählt, einen häufigen Umbau ihrer Kristallstruktur durch Veränderungen des Kristallwassergehaltes zu durchlaufen. Erklärung findet dies in den niedrigen Hydratationsbzw. Übergangstemperaturen, die, wie oben angegeben, im Bereich um 35°C liegen. Der Übergang von Thermonatrit zu Natrit und damit verbunden der Einbau von 9 Wassermolekülen in das Kristallgitter ist mit einer Volumenzunahme von rund 260% verbunden. Der Hydratationsdruck, der beim Übergang von Thermonatrit zum Natriumcarbonatheptahydrat (bei einer Temperatur von 0-20°C und einer r.F. von ca. 80%) aufgebaut wird, kann mit Zahlenwerten zwischen 28,4 –63,7 N/mm<sup>2</sup> angegeben werden [nach Stark/Stürmer 1993].
 
== Umwandlungsreaktionen<br>  ==
 
<br>
 
= Analytischer Nachweis  =


Die Identifikation von Thermonatrit und Natrit kann vor Ort durch einfache Lösungsversuche und die pH-Wertmessung beginnen: Nach Bläuer Böhm ist Natrit das einzige bisher bekannte Ausblühsalz, welches mit einem pH-Wert deutlich über 8 sowohl alkalisch ist als auch die Eigenschaft aufweist, sich bei leichter Erwärmung im eigenen Kristallwasser zu lösen. Analog weist am Objekt vorliegendes Thermonatrit einen deutlich im alkalischen Bereich liegenden pH-Wert auf. Das Lösungsverhalten in Wasser ist gut. In wasserfreiem Ethanol ist Thermonatrit nicht löslich.  
Die Identifikation von Thermonatrit und Natrit kann vor Ort durch einfache Lösungsversuche und die pH-Wertmessung beginnen: Nach Bläuer Böhm ist Natrit das einzige bisher bekannte Ausblühsalz, welches mit einem pH-Wert deutlich über 8 sowohl alkalisch ist als auch die Eigenschaft aufweist, sich bei leichter Erwärmung im eigenen Kristallwasser zu lösen. Analog weist am Objekt vorliegendes Thermonatrit einen deutlich im alkalischen Bereich liegenden pH-Wert auf. Das Lösungsverhalten in Wasser ist gut. In wasserfreiem Ethanol ist Thermonatrit nicht löslich.  


== Mikroskopie<br>  ==
=== Mikroskopie<br>  ===


'''Laboruntersuchung:'''<br>  
'''Laboruntersuchung:'''<br>  
Zeile 172: Zeile 84:
<br> '''Polarisationsmikroskopische Untersuchung:'''<br>  
<br> '''Polarisationsmikroskopische Untersuchung:'''<br>  


In Abhängigkeit von den vorliegenden Luftfeuchte- und Temperaturbedingungen verändern Kristalle des Ausgangsprobematerials und des rekristallisierten Präparates ihren Kristallwassergehalt. An trockner Luft (mit r.F. &lt; ca. 60%) wird nach kurzer Zeit vorwiegend Thermonatrit vorliegen.<br>Die Zuweisung der Brechungsindizes von Thermonatrit erfolgt entsprechend der Immersionsmethode. Einzelpartikel, die in Standard-Immersionsöl mit einem Brechungsindex n<sub>D</sub> = 1,518 eingebettet werden, zeigen bei der Rotation in polarisiertem Durchlicht einen starken Wechsel 107 Bläuer Böhm [1995], a.a.O., S. 86 ff. im Relief. Aufgrund der hohen Doppelbrechung weisen Thermonatritkristalle lebhafte Interferenzfarben auf. Hierin liegt ein klares Unterscheidungsmerkmal zu Natrit, welches eine deutlich geringe maximale Doppelbrechung besitzt. <br> Thermonatrit wird in das System der orthorhombischen Kristalle eingeordnet. Damit verbunden ist das Auftreten paralleler und/oder symmetrischer Auslöschung. Voluminösere Kristallnadeln löschen in der Regel vollständig aus. Die Auslöschung tritt „scharf“ ein.  
In Abhängigkeit von den vorliegenden Luftfeuchte- und Temperaturbedingungen verändern Kristalle des Ausgangsprobematerials und des rekristallisierten Präparates ihren Kristallwassergehalt. An trockener Luft (mit r.F. &lt; ca. 60%) wird nach kurzer Zeit vorwiegend Thermonatrit vorliegen.<br>Die Zuweisung der Brechungsindizes von Thermonatrit erfolgt entsprechend der Immersionsmethode. Einzelpartikel, die in Standard-Immersionsöl mit einem Brechungsindex n<sub>D</sub> = 1,518 eingebettet werden, zeigen bei der Rotation in polarisiertem Durchlicht einen starken Wechsel <bib id="Blaeuer-Boehm:1994"/>, a.a.O., S. 86 ff. im Relief. Aufgrund der hohen Doppelbrechung weisen Thermonatritkristalle lebhafte Interferenzfarben auf. Hierin liegt ein klares Unterscheidungsmerkmal zu Natrit, welches eine deutlich geringe maximale Doppelbrechung besitzt. <br> Thermonatrit wird in das System der orthorhombischen Kristalle eingeordnet. Damit verbunden ist das Auftreten paralleler und/oder symmetrischer Auslöschung. Voluminösere Kristallnadeln löschen in der Regel vollständig aus. Die Auslöschung tritt "scharf" ein.  


<br>'''Verwechslungsmöglichkeiten:'''<br>
<br> '''Verwechslungsmöglichkeiten:'''  


Thermonatrit ist eindeutig zuweisbar, wenn folgende Untersuchungskriterien geklärt sind:  
Thermonatrit ist eindeutig zuweisbar, wenn folgende Untersuchungskriterien geklärt sind:  
Zeile 181: Zeile 93:
*gute Wasserlöslichkeit<br>  
*gute Wasserlöslichkeit<br>  
*charakteristischer Habitus  
*charakteristischer Habitus  
*alle Brechungsindizes unter nD=1,53  
*alle Brechungsindizes unter n<sub>D</sub>=1,53  
*hohe Doppelbrechung  
*hohe Doppelbrechung  
*parallele/symmetrische Auslöschung<br>
*parallele/symmetrische Auslöschung<br>


Salzphasen, die teils gleiche Eigenschaften aufweisen und möglicherweise zu verwechseln wären, sind:<br><br>
{|border="2" cellspacing="0" cellpadding="4" width="80%" align="left" class="wikitable"
 
|+''Tabelle 3: Salzphasen, die teils gleiche Eigenschaften aufweisen und möglicherweise zu verwechseln wären''                 
{| cellspacing="1" cellpadding="1" border="1" style="width: 702px; height: 198px;"
|-
|-
| '''Salzphase'''  
|bgcolor = "#F0F0F0"| '''Salzphase'''  
| <font color="#818181">'''Unterscheidungsmerkmale zu Thermonatrit'''</font>
|bgcolor = "#F0F0F0"| '''Unterscheidungsmerkmale zu Thermonatrit'''
|-
|-
| Nesquehonit, MgCO<sub>3</sub> •<sub>&nbsp; </sub>3H<sub>2</sub>O;  
|bgcolor = "#F7F7F7"| '''Nesquehonit''' MgCO<sub>3</sub> •<sub>&nbsp; </sub>3H<sub>2</sub>O;  
| schwer wasserlöslich, schiefe Auslöschung
|bgcolor = "#FFFFEO"| schwer wasserlöslich / schiefe Auslöschung
|-
|-
| Lansfordit, MgCO<sub>3</sub> • 5H<sub>2</sub>O  
|bgcolor = "#F7F7F7"| '''Lansfordit''' MgCO<sub>3</sub> • 5H<sub>2</sub>O  
| schwer wasserlöslich, schiefe Auslöschung, niedrige Doppelbrechung
|bgcolor = "#FFFFEO"| schwer wasserlöslich / schiefe Auslöschung / niedrige Doppelbrechung
|-
|-
| Trona, Na<sub>3</sub>H(CO<sub>3</sub>)<sub>2</sub> • 2H<sub>2</sub>O  
|bgcolor = "#F7F7F7"| '''Trona''' Na<sub>3</sub>H(CO<sub>3</sub>)<sub>2</sub> • 2H<sub>2</sub>O  
| zumeist ein beobachtbarer Index &gt; 1,53, schiefe Auslöschung
|bgcolor = "#FFFFEO"| zumeist ein beobachtbarer Index &gt; 1,53 / schiefe Auslöschung
|-
|-
| Pottasche, K<sub>2</sub>CO<sub>3</sub>  
|bgcolor = "#F7F7F7"| '''Pottasche''' K<sub>2</sub>CO<sub>3</sub>  
| &nbsp; zumeist ein beobachtbarer Index &gt; 1,53, schiefe Auslöschung, stark hygroskopisch
|bgcolor = "#FFFFEO"| zumeist ein beobachtbarer Index &gt; 1,53 / schiefe Auslöschung / stark hygroskopisch
|}
|}
<br clear=all>
<!--


== Röntgendiffraktometrie  ==
== Röntgendiffraktometrie  ==
Zeile 209: Zeile 122:
== Raman-Stektroskopie  ==
== Raman-Stektroskopie  ==


== DTA/TG  ==
== DTA / TG  ==


== IR-Spektroskopie ==
== IR-Spektroskopie ==


= Umgang mit Thermonatritschäden  =
== Umgang mit Thermonatritschäden  ==


= Salze und Salzschäden im Bild  =
== Thermonatrit im Bild  ==


== Am Objekt  ==
=== Am Objekt  ===


== Unter dem Polarisationsmikrokop  ==
=== Unter dem Polarisationsmikrokop  ===


<br>  
<br>  
Zeile 227: Zeile 140:
== Unter dem Rasterelektronenmikroskop  ==
== Unter dem Rasterelektronenmikroskop  ==


= Weblinks<br> =
-->


http://webmineral.com/data/Thermonatrite.shtml
== Weblinks ==
<references/>


http://www.mindat.org<br>
== Literatur  ==
 
http://www.mineralienatlas.de/lexikon/index.php/MineralData?mineral=Thermonatrit
 
= Literatur  =
 
<br>


&lt;bibreferences/&gt;
<biblist />


<br>
[[Category:Thermonatrit]] [[Category:Carbonat]] [[Category:Salz]] [[Category:Schwarz,Hans-Jürgen]] [[Category:R-MSteiger]] [[Category:Review]][[Category:Liste]]

Aktuelle Version vom 12. Mai 2023, 12:39 Uhr

Autoren: Hans-Jürgen Schwarz , Nils Mainusch
zurück zu Carbonate

Thermonatrit[1][2][3]
Mineralogische Salzbezeichnung Thermonatrit
Chemische Bezeichnung Natriumcarbonathydrat
Trivialname Natriumcarbonat
Chemische Formel Na2CO3•H2O
Hydratformen Natrit (Na2CO3)
Natriumcarbonatheptahydrat (Na2CO3•7H2O)
Natriumcarbonatdecahydrat - Natron(Na2CO3•10H2O)
Kristallsystem orthorhombisch
Deliqueszenzfeuchte 20°C 71% (35°C)
Löslichkeit(g/l) bei 20°C 330 g/l
Dichte (g/cm³) 2,250 g/cm3
Molares Volumen 55,11 cm3/mol
Molare Masse 124,00 g/mol
Transparenz durchsichtig bis durchscheinend
Spaltbarkeit undeutlich
Kristallhabitus
Zwillingsbildung
Phasenübergang
Chemisches Verhalten
Bemerkungen in wässriger Lösung alkalisch,
pH ≈ 12
Kristalloptik
Brechungsindices nx = 1,420
ny= 1,509
nz = 1,525
Doppelbrechung Δ = 0,105
Optische Orientierung zweiachsig negativ
Pleochroismus
Dispersion
Verwendete Literatur
[Lide:1995]Titel: CRC Handbook of Chemistry and Physics
Autor / Verfasser: Lide D.R.
Link zu Google Scholar



Allgemeines[Bearbeiten]

Die allgemeinen Angaben zu Umwandlungsreaktionen, Hyradtationsdrücken, Vorkommen sind bei Natriumcarbonate - Natrit zu finden.


Hygroskopizität[Bearbeiten]

Die Abschätzung der Hygroskopizität von in situ vorliegenden Natriumcarbonaten ist schwierig, da die Lage des Sorptionspunktes und des Sättigungswertes unter dem Einfluss von lokalen Begebenheiten (Fremdionen, vorliegende Hydratstufen, Temperaturverhältnisse) sehr stark variiert. Nachstehend finden sich Angaben der Deliqueszenzfeuchte von Thermonatrit und Natrit in Abhängigkeit von der Umgebungstemperatur (vgl. Tabelle Gleichgewichtsfeuchte in Abhängigkeit von Temperatur):

Tabelle 1: Deliqueszenzfeuchte von Thermonatrit
35°C
71,0% r.F.






Tabelle 2: Deliqueszenzfeuchte von Natrit [nach Arnold/Zehnder, 1991]
15°C 20°C 25°C 30°C
96,5% r.F. 97,9% r.F. 88,2% r.F. 83,2% r.F.







Analytischer Nachweis[Bearbeiten]

Die Identifikation von Thermonatrit und Natrit kann vor Ort durch einfache Lösungsversuche und die pH-Wertmessung beginnen: Nach Bläuer Böhm ist Natrit das einzige bisher bekannte Ausblühsalz, welches mit einem pH-Wert deutlich über 8 sowohl alkalisch ist als auch die Eigenschaft aufweist, sich bei leichter Erwärmung im eigenen Kristallwasser zu lösen. Analog weist am Objekt vorliegendes Thermonatrit einen deutlich im alkalischen Bereich liegenden pH-Wert auf. Das Lösungsverhalten in Wasser ist gut. In wasserfreiem Ethanol ist Thermonatrit nicht löslich.

Mikroskopie
[Bearbeiten]

Laboruntersuchung:

Durch mikroskopische Beobachtungen des Lösungsverhaltens sind die gute Wasserlöslichkeit und Ethanolunlöslichkeit zu überprüfen. Thermonatrit und Natrit
besitzen eine deutliche Tendenz zur Ausbildung nadeliger und/oder dendritischer Kristallformen bei der Rekristallisation. Sofern Gips im Probematerial vorliegt, kommt es zum raschen Ausfall von Calciumcarbonat, was sich in Form eines weißlichen Niederschlages darstellt.


Brechungsindizes:  nx = 1.420;  ny = 1.509; nz = 1,525;
Doppelbrechung:    Δ  = max. 0,105
Kristallklasse:          orthorhombisch


Polarisationsmikroskopische Untersuchung:

In Abhängigkeit von den vorliegenden Luftfeuchte- und Temperaturbedingungen verändern Kristalle des Ausgangsprobematerials und des rekristallisierten Präparates ihren Kristallwassergehalt. An trockener Luft (mit r.F. < ca. 60%) wird nach kurzer Zeit vorwiegend Thermonatrit vorliegen.
Die Zuweisung der Brechungsindizes von Thermonatrit erfolgt entsprechend der Immersionsmethode. Einzelpartikel, die in Standard-Immersionsöl mit einem Brechungsindex nD = 1,518 eingebettet werden, zeigen bei der Rotation in polarisiertem Durchlicht einen starken Wechsel [Blaeuer-Boehm:1994]Titel: Salzuntersuchungen an Baudenkmälern
Autor / Verfasser: Bläuer-Böhm, Christine
Link zu Google Scholar
, a.a.O., S. 86 ff. im Relief. Aufgrund der hohen Doppelbrechung weisen Thermonatritkristalle lebhafte Interferenzfarben auf. Hierin liegt ein klares Unterscheidungsmerkmal zu Natrit, welches eine deutlich geringe maximale Doppelbrechung besitzt.
Thermonatrit wird in das System der orthorhombischen Kristalle eingeordnet. Damit verbunden ist das Auftreten paralleler und/oder symmetrischer Auslöschung. Voluminösere Kristallnadeln löschen in der Regel vollständig aus. Die Auslöschung tritt "scharf" ein.


Verwechslungsmöglichkeiten:

Thermonatrit ist eindeutig zuweisbar, wenn folgende Untersuchungskriterien geklärt sind:

  • hoher pH-Wert
  • gute Wasserlöslichkeit
  • charakteristischer Habitus
  • alle Brechungsindizes unter nD=1,53
  • hohe Doppelbrechung
  • parallele/symmetrische Auslöschung
Tabelle 3: Salzphasen, die teils gleiche Eigenschaften aufweisen und möglicherweise zu verwechseln wären
Salzphase Unterscheidungsmerkmale zu Thermonatrit
Nesquehonit MgCO3  3H2O; schwer wasserlöslich / schiefe Auslöschung
Lansfordit MgCO3 • 5H2O schwer wasserlöslich / schiefe Auslöschung / niedrige Doppelbrechung
Trona Na3H(CO3)2 • 2H2O zumeist ein beobachtbarer Index > 1,53 / schiefe Auslöschung
Pottasche K2CO3 zumeist ein beobachtbarer Index > 1,53 / schiefe Auslöschung / stark hygroskopisch


Weblinks[Bearbeiten]

Literatur[Bearbeiten]

[Blaeuer-Boehm:1994]Bläuer-Böhm, Christine (1994): Salzuntersuchungen an Baudenkmälern. In: Zeitschrift für Kunsttechnologie und Konservierung, 8 (1), 86-103Link zu Google Scholar
[Lide:1995]Lide D.R. (Hrsg.) Lide D.R. (1995): CRC Handbook of Chemistry and Physics, CRC PressLink zu Google Scholar