Verfahren zur Salzanalyse: Unterschied zwischen den Versionen

Aus Salzwiki
Zur Navigation springen Zur Suche springen
Zeile 15: Zeile 15:
== [[Röntgendiffraktometrie (XRD)]]  ==
== [[Röntgendiffraktometrie (XRD)]]  ==


Mit der XRD können qualitative und quantitative Salzanalysen durchgeführt werden. An den Kristallgitterebenen von allen kristallinen Stoffen wie den Salzen  wird ein Röntgenstrahl vergleichbar der Beugung von Licht an Strichgittern, gebeugt. Treffen Röntgenstrahlen auf ein Kristall, so ergibt sich eine Reihe von "Reflexen", die charakteristish für jedes Salz ist, quasi einen "Fingerprint" darstellt.  Ist die Wellenlänge der Röntgenstrahlung bekannt, so lässt sich aus der Lage der Beugungsreflexe die untersuchte kristalline Phase, d. h. in unserem Fall das Salz bestimmen.  
Mit der XRD können qualitative und quantitative Salzanalysen durchgeführt werden. An den Kristallgitterebenen von allen kristallinen Stoffen wie den Salzen  wird ein Röntgenstrahl vergleichbar der Beugung von Licht an Strichgittern, gebeugt. Treffen Röntgenstrahlen auf ein Kristall, so ergibt sich eine Reihe von "Reflexen", die charakteristish für jedes Salz ist, quasi einen "Fingerprint" darstellt.  Ist die Wellenlänge der Röntgenstrahlung bekannt, so lässt sich aus der Lage der Beugungsreflexe die untersuchte kristalline Phase, d. h. in unserem Fall das Salz, bestimmen.


== [[Atomabsorptionsspektroskopie (AAS)]]  ==
== [[Atomabsorptionsspektroskopie (AAS)]]  ==

Version vom 27. Juli 2010, 13:42 Uhr

Autoren: Hans-Jürgen Schwarz, AHusen
zurück zu SalzWiki

Zusammenfassung[Bearbeiten]

Bei dem Vorliegen einer Salzbelastung und bei Salzschäden kann eine große Auswahl von Untersuchungsmethoden eingesetzt werden. Es werden die Methoden dargestellt, die in der Regel eine quantitative Bestimmung der salzbildenden Ionen, zumindest aber eine quantitative Bestimmung der Einzelionen, erlauben. Das Messprinzip, das Einsatzgebiet und die Analysemöglichkeiten werden kurz skizziert.

Polarisationsmikroskopie[Bearbeiten]

Mit Hilfe der Polarisationsmikroskopie können  die verschiedenen Salze aufgrund ihre optischen Eigenschaften bestimmt werden. Dazu gehört insbesondere die Untersuchung der Doppel- und Lichtbrechung der Salze. Gegenüber den normalen Durchlicht-Mikroskopen besitzt das Polarisationsmikroskop zwei Polarisatoren (Polarisator und Analysator). Durch den Analysator kann die Änderung des linear polarisierten Lichtes aufgrund der optischen Eigenschaften des Salzes erfasst werden.

Mikrochemie[Bearbeiten]

Mit mikrochemischen Reaktionen können an sehr geringen Probenmengen meist mit Hilfe eines Mikroskopes (Polarisatiosmikroskop) bestimmt werden. Diese Methode lässt sich auch gut vor Ort an den Objekten einsetzen. Die mikrochemische Salzanalyse besteht im qualitativen Nachweis einzelner Salzionen, in mehr oder weniger konzentrierter wässriger Lösung.

Röntgendiffraktometrie (XRD)[Bearbeiten]

Mit der XRD können qualitative und quantitative Salzanalysen durchgeführt werden. An den Kristallgitterebenen von allen kristallinen Stoffen wie den Salzen  wird ein Röntgenstrahl vergleichbar der Beugung von Licht an Strichgittern, gebeugt. Treffen Röntgenstrahlen auf ein Kristall, so ergibt sich eine Reihe von "Reflexen", die charakteristish für jedes Salz ist, quasi einen "Fingerprint" darstellt.  Ist die Wellenlänge der Röntgenstrahlung bekannt, so lässt sich aus der Lage der Beugungsreflexe die untersuchte kristalline Phase, d. h. in unserem Fall das Salz, bestimmen.

Atomabsorptionsspektroskopie (AAS)[Bearbeiten]

Die Atomabsorptionsspektroskopie ist ein Verfahren, das eine schnelle und sehr genaue quantitative Bestimmungen vieler Elemente erlaubt. Da die Methode auf der Energieabsorption durch freie Atome beruht, kann sie meist ohne vorhergehende Trennungs- oder Isolierungsschritte von anderen in der Probe vorhandenen Elementen angewendet werden. Die zur Untersuchung benötigte Probenmenge ist gering. Es lassen sich damit Konzentrationen in Größenordnungen von einem millionstel (ppm) oder gar einem milliardstel Teil (ppb) in der Probe nachweisen. Es werden nur die Elemenete analysiert, nach denen man sucht.

Induktiv gekoppeltes Plasma (ICP)[Bearbeiten]

Das ICP dient zur Anregung z.B. bei der Atomemissionsspektroskopie (AES-ICP) oder in der Kopplung mit einem Massenspektrometer (ICP-MS). Das induktiv gekoppelte Plasma ist ein im Hochfrequenzfeld (27 MHz) ionisiertes Gas (Argon), das als Atomisierungs- und Anregungsmedium für die eingesprühte, flüssige oder gelöste Probe dient. Das ICP kann in der Emissions-Spektroskopie mit verschiedenen optischen und elektrischen Systemen entweder mit simultanen oder sequentiellen Multielement-Spektrometern kombiniert werden. Es lassen sich damit sehr geringe Konzentrationen in Größenordnungen von einem millionstel (ppm) oder einem milliardstel Teil (ppb) in der Probe nachweisen.

Ionenchromatographie (IC)[Bearbeiten]

Unter Chromatographie versteht man ganz allgemein Verfahren zur Trennung von Substanzen, wobei diese unterschiedlich zwischen einer stationären und einer mobilen Phase verteilt werden. Bei der Ionenchromatographie werden aufgrund ihrer Ladungen Ionen an der staionären Phase gebunden und später durch einen Eluenten durch einen Ionenaustausch in die mobile Phase frei gegeben. Die Quantifizierung geschieht mit Hilfe eines geeigneten Detektors. Unter Nutzung spzifischer Trennsäulen können sowohl Anionen wie auch Kationen quatitativ in geringer Konzentration bestimmt werden


Photometrie[Bearbeiten]

Das Grundprinzip der Photometrie besteht darin, eine farbige bzw. lichtabsorbierende Lösung herzustellen, wobei der gesuchte Stoff oder das gesuchte Element in eine lichtechte, farbige und lösliche Verbindung eingebaut oder überführt wird oder eine Farbreaktion auslöst bzw. steuert. Die Photometrie beruht dabei auf der Messung der Absorption monochromatischer Strahlung durch die Lösung. Es sind damit quantitative Analysen von Anionen und Kationenin in einer für die Salzanalytik ausreichenden Genauigkeit möglich


Literatur[Bearbeiten]